

Date 1

Differentiate using any method we have studied.

1.
$$f(x) = 4x^7 - 11\sqrt[5]{x^3} + 2e^x$$

2.
$$y = (3x - 7) \cdot tan x$$

3.
$$y = \frac{2x^2-5}{3x^3}$$

Functions f and g are differentiable functions of x.

x	f(x)	f'(x)	g(x)	g'(x)
1	1	2	3	-1
2	3	$\frac{3}{2}$	2	-1
3	4	0	1	$\frac{1}{2}$
4	3	-1	3	2

Part 1) Given
$$h_1(x) = f(x) + g(x)$$
, find $h_1'(4)$
Part 2) Given $h_2(x) = f(x) - g(x)$, find $h_2'(4)$
Part 3) Given $h_3(x) = f(x) \cdot g(x)$, find $h_3'(2)$
Part 4) Given $h_4(x) = \frac{f(x)}{g(x)}$, find $h_4'(3)$

Date 3

A graph of velocity v(t) is provided. Given that acceleration is the rate of change in velocity

[a(t) = v'(t)], find each value.

a. a(1)

b. a(2)

c. a(2.5)

d. a(5)

Date 4

Calculator Active: Given $f(x) = x^2 + 3x - 1$:

1. Find the average rate of change on [0, 1].

2. Find f'(0.25).

Calculator Active: The number of minutes, m(x), that Hayden has spent playing Mario Kart Tour has been recorded over selected one-hour periods throughout his day. Use the data in the table to estimate m'(4) and interpret its meaning in context, including units.

x (hours since waking)	2	3	5	8
m(x) (number of minutes played)	18	45	33	59

Date 6

Differentiate using any method we have studied. 1. $y = (3x^2 - 2x)(4x^2 + 2x - 4)$

2. y = x lnx + 3 cosx

3.
$$f(x) = \frac{2x^2-5}{3x^3-7x}$$

Date 7

Write the equation of the line tangent to the curve $f(x) = 3\sqrt{x}$ at x = 9.

Date 8

****Calculator Active:**

1. Given $f(x) = log_2(5x - 3)$, find f'(2).

2. Find the slope of the curve $y = 3x^3 - 2x^2 - x$ at the point where x = 2.

Evaluate each limit.

$$1.\lim_{h\to 0}\frac{\sqrt{x+h}-\sqrt{x}}{h}$$

2.
$$\lim_{x \to 1} \frac{(6x^2 - 3x + 4) - 7}{x - 1}$$

Date 10 🖤

Determine whether the function is differentiable at x = 2.

$$f(x) = \begin{cases} 3x + 4, x < 2\\ x^2 + 3x, x \ge 2 \end{cases}$$